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We study the behaviour of steady-state solutions of a two-component flame filament system subject to
chaotic mixing. This system exhibits a saddle-node bifurcation at a critical Damköhler number. We analyze the
system through a one-dimensional phenomenological lamellar model. We present a nonperturbative technique,
which allows us to describe the behaviour of the reduced lamellar model near the saddle node bifurcation. The
influence of the Lewis number on the solution behaviour is investigated. We present a simple empirical formula
for the wave speed valid for large Damköhler and large Lewis numbers. This formula allows us to describe the
solution far away from the bifurcation. Numerical simulations show good agreement with the results.
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I. INTRODUCTION

The field of active chaotic flows is a rapidly developing
interdisciplinary area of nonlinear science, which focuses on
the effect of chaotic advection on chemical and biological
reactions �1�. It has been observed that imperfect mixing in
diffusive nonlinear systems �such as autocatalytic systems�
can give rise to new and unexpected phenomena �2�. A recent
overview is given in �3�. The chaotic dynamics induced by
advecting time-dependent flows manifests itself in the distri-
bution of fluid parcels along fractal patterns leading to the
formation of filamental structures. In the case of active pro-
cesses, reactive tracers are advected with these filaments, and
the increase in their surface area has an effect on the kinetics
of the reaction. This often has important consequences in
wide ranging fields. Besides in the case of combustion,
where mixing-induced bifurcations may lead to unwanted
termination of the reaction, the study of chaotically stirred
reaction-diffusion systems also has important consequences
for a number of environmental processes, such as depletion
of ozone by chlorine filaments �4� and development of plank-
ton patchiness �5–10�. It has been observed that fluid mixing
has a significant effect on combustion processes and, in par-
ticular, on flame filamental structures �11–18�. The quench-
ing of a flame is strongly dependant on the Damköhler num-
ber Da, which is the ratio between the advective and
chemical time-scales. Much insight has been gained by re-
ducing the typically two-dimensional partial differential
equations describing combustion to so-called lamellar mod-
els. The idea behind this reduction is as follows. A chaotic
stirring flow is characterized by hyperbolic regions of
stretching and compression, which lead to filamentation of
the reactant. The stretching is directed along the filament,
whereas the compression is directed transversal to the fila-
ment. Along the filament the concentration of the reactant is
approximately homogeneous. Hence, in order to study the
dynamics of such a filament, one may consider only the dy-
namics of the cross-section of a filament which is aligned
with the direction of compression. The dimensionality of the

problem is, therefore, reduced to one spatial dimension. In
lamellar models, steady-state solutions are formed as the bal-
ance of the inwards-directed compression and the outwards-
directed diffusive propagation of a reactant. If the compres-
sion is too large, the reaction will be suppressed. Lamellar
models have been widely used in different physical contexts
�6,8,18–24�. A critical account on such reductions is given in
�25�. For a different approach to this problem see �26�.

In this work we study the influence of chaotic stirring on
combustion waves. One particularity for problems involving
combustion waves is the strong dependence of the reaction
rate on the temperature. This is usually modelled by an
Arrhenius term �30�. A combustion wave can be �at least for
low stirring rates� divided into three distinct regions. Ahead
of the combustion waves, in the so-called preheat zone, the
temperature is low and the reactant has not been burnt. When
the temperature increases and becomes sufficiently high, the
reaction rate increases exponentially and the reactant is
quickly burnt under heat release. This takes place in a narrow
steep region called the reaction zone. Behind the front there
is the product zone where all reactant is burnt, no reaction
occurs and the temperature is constant. The behaviour of
combustion waves is also characterized by the Lewis num-
ber. The Lewis number Le is a nondimensional number
which measures the ratio of the diffusivity of the temperature
with the diffusivity of the reactant. Systems with a large
Lewis number are often called “solid,” whereas systems with
low Lewis numbers are called “gaseous.”

The stirred system is further characterized by the dimen-
sionless Damköhler number Da. The Damköhler number Da
measures the ratio of the time scale of the stirring flow with
the time scale of the reaction. The smaller Da is the faster the
stirring is compared to the reaction. Chaotic stirring may
lead to an unwanted termination of the reaction. This com-
bustion wave propagation failure occurs as a saddle node
bifurcation. A saddle node bifurcation—generic for chaoti-
cally stirred reaction-diffusion systems—was observed in
�18,19� for a combustion system at a critical Damköhler
number Dac. The bifurcation point corresponds to the
“quenching point,” below which the stirring rate exceeds the
rate at which the fuel burns and the flame is extinguished.
The critical value of the Damköhler number Dac depends on
the Lewis number. It is this bifurcation that we are mainly
concerned with in this work. In �18� an asymptotic analysis
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was developed for various limiting cases, where the ordinary
differential equations describing the stationary fronts were
simplified. A numerical integration of these asymptotic equa-
tions was able to determine the critical Damköhler number
fairly well. However, the pulse behaviour near the saddle
node has not yet been described accurately. To fill this gap
we will employ a nonperturbative, nonasymptotic technique
that was developed for excitable media �27� and which had
successfully been employed for chaotically stirred autocata-
lytic and bistable reaction diffusion dynamics �28,29�.

In the next section, we present the lamellar model used to
describe the flame filament system. In Sec. III, the nonper-
turbative, nonasymptotic technique is reviewed. In Sec. IV,
we use this method to describe the behaviour near the saddle
node for different values of Le, and in Sec. V we study the
case of slow stirring �for solutions far away from the bifur-
cation point�. We conclude with a summary in Sec. VI.

II. THE FLAME FILAMENT MODEL

We study a simple combustion system in which the con-
version of a fuel C, of concentration c, and absolute tempera-
ture T, to an inert product P, is modelled as a first order
process through the reaction C→P. The model proposed in
�18,19� describes the resulting filament structures of such a
system when it is subjected to a chaotic stirring flow. The
temperature dependence of the reaction rate k�T� is given by
an Arrhenius law

k�T� = �k0 exp�−
E

RT
� if T � Ti,

0 if T � Ti,
� �1�

with an ignition temperature Ti, and an activation energy E.
Here R denotes the universal gas constant. The cutoff tem-
perature Ti allows for a simple solution to the so-called cold
boundary problem. If Ti=0, large preheat zones may arise
which imply a nonzero temperature at the boundary, away
from the reaction zone. Introducing this nonzero cutoff al-
lows for a finite box with a cold boundary of T=0. This is a
purely practical issue introduced to simplify numerical simu-
lations. We note that there is no change to the results we
present here if a purely Arrhenius reaction term is used.

The model is then given by

�Cp� �T

�t
− �x

�T

�x
� = �

�2T

�x2 + qck�T� , �2�

�c

�t
− �x

�c

�x
= D

�2c

�x2 − ck�T� , �3�

in the region −��x��, where � represents the density of
the reactant, Cp the specific heat capacity, � the thermal con-
ductivity, D the diffusion coefficient, and k�T� is the reaction
rate given in �1�. The parameter � describes the compression
of the filament and can be thought of as the Lagrangian mean
strain of the chaotic flow in the contracting direction, and
may be given by the absolute value of the negative Lyapunov
exponent of this flow. The boundary condition applied to this

system is T→Ta, c→c0 as 	x	→�, where Ta is the
ambient temperature �assumed to be less than the ignition
temperature Ti�. We rescale Eqs. �2� and �3� by introducing
nondimensional variables T�= �T−Ta� / �Tb−Ta�, c�=c /c0,
t�=�t, and x�=x
� /D, where Tb is the burnt temperature
Tb=Ta+ �qc0 /�Cp�. Omitting the primes, we obtain

�T

�t
− x

�T

�x
= Le

�2T

�x2 + DacK�T� , �4�

�c

�t
− x

�c

�x
=

�2c

�x2 − DacK�T� . �5�

Here, we have introduced the Damköhler number Da=k0 /�,
and the Lewis number Le=� / ��CpD�. The Damköhler num-
ber measures the ratio of the time scale of the stirring flow
1/� with the time scale of the reaction 1/k0. For Le�1 the
diffusivities of temperature and concentration are different.
The rescaled system now has the boundary conditions
T→0, c→1 as 	x	→�, while the reaction rate is now given
by

K�T� = �exp�−
1

	��1 − 
�T + 
�� if T � T̄i,

0 if T � T̄i,
�

with parameters

	 =
RTb

E
, 
 =

Ta

Tb
, T̄i =

Ti − Ta

Tb − Ta
.

We are particularly interested in steady-state solutions of �4�
and �5�, which are given as solutions of the ordinary differ-
ential equations

Le
d2T

dx2 + x
dT

dx
+ DacK�T� = 0, �6�

d2c

dx2 + x
dc

dx
− DacK�T� = 0. �7�

We recall that a stationary front is given through a balance of
the front velocity V with the velocity of the chaotic stirring x.
The front is a steady-state with a zero velocity when V=x.
For all following numerical simulations we use 
=0.1,

	=1, and T̄i=0.001, unless explicitly stated otherwise.
It has been observed that the temperature and concentra-

tion profiles of these steady-states depend strongly on Le. In
the limiting cases of small and large Lewis numbers the so-
lution could be studied through an asymptotic analysis �18�.
We will focus here on applying a nonperturbative method,
which does not require asymptotic expansions, to describe
the solution behaviour close to the bifurcation and far away
from it. Instead of obtaining a set of reduced ordinary differ-
ential equations which subsequently had to be integrated nu-
merically, we will obtain a set of algebraic equations deter-
mining the parameters of the solutions and the actual
bifurcation point. In the next section we will outline this
nonperturbative method.
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III. THE NONPERTURBATIVE METHOD

In the study of critical wave propagation in reaction-
diffusion systems, it is observed that asymptotic techniques
break down near the bifurcation point. This is due to the fact
that the pulse shape in this region is approximately bell-
shaped �see Figs. 1, 5, and 7�. Close to the bifurcation the
solution cannot be separated into inner and outer regions,
which have been employed by asymptotic theories. Hence, a
new method was developed in order to determine the bifur-
cation point and the shape of near-critical pulses for critical
wave propagation in excitable media �27�. This method has
since been successfully applied to chaotically stirred auto-
catalytic and bistable systems �28,29�.

The idea is to restrict the solutions of the system under
consideration, i.e., Eqs. �4� and �5�, or �6� and �7� to a sub-
space of specified test functions C�� ,ai�, which are param-
eterized by ai. For example, we can use a Gaussian as a
test-function, in which case the parameters are given by its
amplitude and its inverse pulse width. These parameters are
then determined by minimizing the error made by the restric-
tion to the subspace defined by the test function ansatz. This
is achieved by projecting the full partial differential equa-
tions onto the tangent space of the restricted subspace, which
is spanned by the partial derivatives of the test functions with
respect to the parameters ai. We set the integral of the prod-
ucts of Eqs. �4� and �5�, or �6� and �7�, with the basis func-

tions of the tangent space to zero. This will lead to algebraic
equations for the parameters ai, and also yield the critical
Damköhler number Dac.

The question is which functions to use as test functions.
Numerical solution of the system �4� and �5� reveal that for
lower values of Da the profiles of T �and 1−c� are pulse-like,
and are well-approximated by bell-shaped functions, such as
Gaussians �see Figs. 1, 5, and 7. For higher values of Da the
solutions are plateau-like with a clear separation of two flat
regions by a steep front, and can be approximated by test
functions that show this behaviour, such as tanh-functions
�see Figs. 1, 5, and 7�. However, it is to be noted that the
exact behaviour of the solution at any given value of Da is
strongly dependent on the value of , and in the following
sections we shall examine some of these trends. The general
form of our solution is

T�x� = ��x,ai� and c�x� = 1 − �x,ai� . �8�

We may choose the test functions ��x ,ai� and �x ,ai� to be
either bell-shaped or plateau-like depending on the nature of
the solution at the corresponding values of Da and Le.

Close to the bifurcation point the solutions are bell-
shaped. The choice for the actual functional form for these
bell-shaped functions is arbitrary. There is no asymptotic ar-
gument that can be made to favor one functional form over
the others. Unless stated otherwise, we shall choose Gauss-
ians

��x,ai� = f0 exp�− �2� with � = wx ,

�x,ai� = g0 exp�− �2� with � = vx . �9�

Here ai= �f0 ,w ,g0 ,v�, but one may equally use
sechn-functions or other such bell-shaped functions for �
and . We will see later that the results do not significantly
depend on the actual functional form of the bell-shaped
function—indicating the absence of an asymptotic theory
which may be able to deduce the functional form.

For plateau-like solutions at large Damköhler numbers we
use

��x,ai� =
f0

2
�tanh�� + �w� − tanh�� − �w�� ,

�x,ai� =
g0

2
�tanh�� + �v� − tanh�� − �v�� , �10�

where again �=wx and �=vx, and now
ai= �f0 ,w ,� ,g0 ,v ,��. Here � and � are the widths of the
corresponding test functions, and w and v measure the steep-
ness of the reaction zone. By choosing �10� we ignore the
problem of a preheat zone which would requires us to take
two composite tanh-functions as test functions, each
equipped with two different widths w1,2 and v1,2. This was
observed numerically for large Damköhler numbers and also
for small Lewis numbers, when the reaction zone becomes
narrow. In passing we note that for such cases the reaction
term cK�T� in Eqs. �6� and �7� is zero except in the narrow
reaction zone. Outside this small steep region either c or T
are close to zero. The stationary equations can, therefore, be

FIG. 1. The steady solutions of the flame filament system �6�
and �7� for Le=0.1. Both the stable solutions �denoted by solid
lines� and the unstable solutions �denoted by dotted lines� are
shown for logarithmically spaced values of Da between Da=4.62
�Dac� and Da=150. �a� Profiles of T. �b� Profiles of c.

BIFURCATIONS OF FLAME FILAMENTS IN… PHYSICAL REVIEW E 75, 016209 �2007�

016209-3



approximated by the uncoupled equations 0=LeTxx+xTx and
0=cxx+xcx, which are solved by error functions.

As described above, we restrict the solutions to the sub-
space of the test functions ���� and ���, and determine the
free parameters by minimizing the error made by this restric-
tion. We do this by projecting Eq. �4� onto the tangent space
of the restricted subspace spanned by �T /�ai and, similarly,
�5� onto the space with basis functions �c /�ai, where ai are
the parameters of the tangent space. If we choose a combi-
nation of bell-shaped test functions �9�, the free parameters
are ai= �f0 ,w ,g0 ,v�, and the tangent space of the space of
test functions is spanned by the basis functions

�T

�f0
=

�

f0
,

�T

�w
=

���

w
,

�c

�g0
= −



g0
,

�c

�v
= −

��

v
.

�11�

If we choose a plateau-like solution �10�, we have the addi-
tional free parameters � and �, and the basis functions of the
tangent space are

�T

�f0
=

�

f0
,

�T

�w
=

1

2
��

w
�s1 − s2� + ��s1 + s2��,

�T

��
=

w

2
�s1 + s2� ,

�c

�g0
= −



g0
,

�c

�v
= −

1

2
� �

v
�s3 − s4� + ��s3 + s4��,

�c

��
= −

v
2

�s3 + s4� , �12�

where s1=sech2��+�w�,s2=sech2��−�w�, s3=sech2��+�v�,
and s4=sech2��−�v�. Hence, depending on our choices for
the test functions, the basis functions of the tangent space are
represented by �11� or by �12�. The projection is done by
integrating the product of Eq. �6� and �7� with the corre-
sponding basis functions over the � and � domains. Mini-
mizing the error caused by restricting the solutions requires
this projection to be zero. Inserting �8� into �6� and �7�, we
obtain

w2Le��� + ��� + Da�1 − �K��� = 0, �13�

v2�� + �� + Da�1 − �K��� = 0. �14�

The projections of Eqs. �13� and �14� onto the tangent space
with basis functions given in �11� or �12�, depending on our
choice of test functions, lead to the following conditions:

�w2Le��� + ��� + Da�1 − �K���	�T/�ai�� = 0, �15�

where the brackets indicate integration over the whole � do-
main, and

�v2�� + �� + Da�1 − �K���	�c/�bi�� = 0, �16�

where the brackets indicate integration over the whole � do-
main. These are four �in the case of bell-shaped functions� or
six �in the case of plateau-like functions� equations for the
respective four or six parameters. However, for any of the

choices of basis functions, the resulting Eqs. �15� and �16�
are transcendental equations for the parameters, due to the
K��� term. We therefore integrate this system numerically
and use root finding methods to obtain the free parameters.

In the following section, we shall use this nonperturbative
method to study the solution near the bifurcation point for
different values of the Lewis number. We will then study the
solution far from Dac in Sec. V.

IV. THE SOLUTION NEAR THE SADDLE NODE

Numerical simulations of the system �6� and �7� reveals
the existence of a saddle node bifurcation in which a stable
solution branch collides with an unstable branch when the
Damköhler number Da is decreased to a critical value Dac.
As mentioned in Sec. III, close to the bifurcation point we
may approximate the solutions of T and c by bell-shaped
functions. We therefore use such test functions in our ansatz
�8� to solve �15� and �16�. We now show a comparison of the
nonperturbative test function results with the corresponding
results from the numerical solution of the full system �6� and
�7�, obtained via shooting methods for corresponding Da and
Le.

A. Small Lewis numbers

For small Lewis numbers the reaction zone is narrow, and
within the product zone temperatures which are higher than
the burnt temperature Tb �i.e., higher than 1 in our rescaled
model� can be obtained without much consumption of the
reactant. However, with increasing Damköhler number the
temperature in the product zone will approach the burnt tem-
perature. In Fig. 1, we show the profiles of T and c for
Le=0.1, obtained from the numerical solution of �6� and �7�.
We observe that the solutions of both T and c are pulse-like
near the bifurcation point, but as Da increases we see that the
stable solutions for both slowly become plateau-like. As we
move away from Dac, the stable solution for T first increases
in amplitude, and then slowly decreases upon varying Da.
On the other hand, the unstable solutions for both T and c
remain pulse-like �with decreasing steepness� as we move
further and further away from the saddle node.

To model the pulse-like behaviour near the bifurcation
point, we use bell-shaped test functions �9� as our basis func-
tions. As stated earlier, the exact functional form of our bell-
shaped function is arbitrary, and to illustrate this, we shall
choose Gaussians �9� as well as sech2-functions with
����= f0 sech2��� and ���=g0 sech2��� as our test func-
tions. From the numerical solution of Eqs. �15� and �16� with
these basis functions, we can obtain values for the ampli-
tudes and inverse widths for our test functions over a range
of Da. We compare these results with the amplitudes of T
and c obtained from numerical simulations of the full system
�6� and �7�. The full system of ordinary differential equations
is solved by a standard shooting method where we shoot
from x=0 to x=�.

As seen in Fig. 2, near the saddle node we find very good
agreement between the amplitudes f0 and 1−g0 obtained
with these bell-shaped test functions, and the amplitudes ob-
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tained by simulating the full ordinary differential equations
�6� and �7�. We observe that there is not much difference
between the set of results obtained using Gaussians, and
those obtained using sech2-functions. As we move away
from the saddle node the fits start to get worse along the
stable branch, which is to be expected as the solutions of T
and c move away from pulse-like profiles as the Damköhler
number increases. Also, as expected, we find excellent agree-
ment along the unstable branch even for larger Da, as both
the solutions of T and c remain pulse-like. This is true for all
Lewis numbers �cf. Figs. 6 and 8�. In Fig. 3 we show the
behaviour of the inverse pulse widths w and v of the tem-
perature and the concentration, respectively. The inverse
pulse width exhibits the same functional dependence with Da
typical for a saddle-node, at the same value of Dac, as the
amplitude in Fig. 2. Again good agreement between the test
function approach and the actual results of a simulation of
the full system is seen. The pulse width for the actual solu-

tions of the full system �6� and �7� and were determined by
measuring the extent x̄ of the pulse measured from x=0 at
which its value has dropped to half its value. For a Gaussian,
this implies that w=
ln�2� / x̄.

We note that the combination of tanh-functions �10�
which were initially designed to approximate plateau-like so-
lutions can also be used to approximate pulse-like solutions
for sufficiently small � �or �, respectively�. However, since
the ansatz �10� involves six parameters �as opposed to four
parameters for the bell-shaped functions �9��, and as root-
finding becomes more and more sensitive to a correct initial
guess in higher dimensions, we use bell-shaped functions
�11� with less computational effort. However, the tanh-
functions are very well suited to reproduce the observed in-
crease of the temperature within the product zone with in-
creasing Damköhler number and the subsequent decrease.
This is depicted in Fig. 4. Note that for this range of
Damköhler numbers the combustion wave has not reached a
plateau-like shape �see Fig. 1�.

FIG. 2. Comparison of the numerical results for the amplitude,
obtained using the nonperturbative method with bell-shaped test
functions �9�, with the results for the full system of ordinary differ-
ential equations �6� and �7� obtained via shooting for Le=0.1 �de-
noted by stars�. We use Gaussians �denoted by a solid line and a
dashed line for the stable and unstable branches, respectively�, as
well as sech2-functions �denoted by a dot-dashed line and a dotted
line for the stable and unstable branches, respectively� as our test
functions. �a� The amplitude for the temperature, f0, vs Da. �b� The
amplitude for the concentration, 1−g0, vs Da.

FIG. 3. Comparison of the numerical results for the inverse
pulses widths, obtained using the nonperturbative method with bell-
shaped test functions �9�, with the results for the full system of
ordinary differential equations �6� and �7� obtained via shooting for
Le=0.1 �denoted by stars�. We use Gaussians �denoted by a solid
line and a dashed line for the stable and unstable branches respec-
tively� as our test functions. �a� The inverse pulse width for the
temperature, w, vs Da. �b� The inverse pulse width for the concen-
tration, v, versus Da. Note the different scales in �a� and �b�.
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B. Equal diffusion: Le=1

The case Le=1 has attracted much attention because it
allows for a great simplification due to the relation T=1−c.
The two equations �6� and �7� collapse into one single equa-
tion. We, therefore, only need one test function to describe
the full behaviour of the system. For this case, the profiles of
T and c obtained from numerical simulations of �6� and �7�
are shown in Fig. 5. Again, we see that along the stable
branch both the solutions are pulse-like near the bifurcation
point, and become plateau-like as Da increases. However, the
transition from pulse-like to plateau-like is a lot quicker than
it is for smaller Le. Along the unstable branch, the solution
remains pulse-like for large Da.

To model the behaviour of the solution near Dac, we once
again use bell-shaped test functions �9� as our basis func-
tions. As seen in Fig. 6, near the saddle node we again find
good agreement between the amplitude, f0, and the inverse
pulse width, w, obtained from the solution of Eqs. �15� and
�16� with these test functions, and the amplitude and inverse
pulse width of T obtained by integrating the full system �6�
and �7�. Note that for Le=1 we have g0= f0 and v=w since
c=T. However, the fit quickly deviates from the solution for
the stable branch as anticipated. As with the case for small
Lewis numbers, we see that the fit along the unstable branch
remains very good even as we move further away from the
saddle node.

C. Large Lewis numbers

The large Lewis number regime is often called the “solid”
regime. The heat conduction is much larger than the diffu-
sivity of the reactant. This implies a broader reaction zone
when compared to those corresponding to smaller Lewis
numbers. The temperature within the product zone is less
than the burnt temperature �i.e., in our rescaled model less
than 1� and the reactant is consumed more than in the case of

small Lewis numbers. Again, when increasing the
Damköhler number, the temperature within the product zone
will approach 1. In Fig. 7 we show the profiles of T and c for
Le=10, obtained from the numerical solution of �6� and �7�.
We note that the profiles of both species broaden further
close to the bifurcation point. On increasing Da from Dac,
the profiles of the solutions very quickly change from pulse-
like to plateau-like, and, therefore, the range of Damköhler
numbers for which a bell-shaped function is a good approxi-
mation is diminished. We shall therefore consider the basis
functions �9� as well as �10� to model the behaviour of the
solutions near the saddle node.

In Figs. 8 and 9 we see that the amplitudes and inverse
pulse widths obtained using the nonperturbative method
shows good agreement with the numerically obtained ampli-
tudes near Dac. Again the behaviour of the unstable branch is
well approximated by using bell-shaped test functions. How-
ever, we see that in Fig. 8 the agreement of the amplitudes
obtained by results from the test function approach �15� and
�16� using bell-shaped test functions �9� with the respective
amplitudes of T and c obtained by the simulation of the full
system �6� and �7� is not as good for the stable branch as it is
for smaller Lewis numbers. The same can be seen for the
inverse pulse widths in Fig. 9. From Fig. 7 we see that the

FIG. 4. Comparison of the numerical results describing the be-
haviour of the stable branch of T in the range 10�Da�50 for
Le=0.1. The results for the amplitude, f0, obtained using the non-
perturbative method with basis functions �10� are denoted by a solid
line, and the results obtained via shooting of the full system of
ordinary differential equations �6� and �7� are denoted by stars.

FIG. 5. The steady solutions of the flame filament system �6�
and �7� for Le=1. Both the stable solutions �denoted by solid lines�
and the unstable solutions �denoted by dotted lines� are shown for
logarithmically spaced values of Da between Da=6.963 �Dac�
and Da=50. �a� Profiles of T. �b� Profiles of c.
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solution rapidly evolves into a plateau-like solution; we
therefore use tanh-basis functions �10�. In Fig. 8 it is seen
that the amplitudes are much better recovered using the tanh-
function ansatz �10�. In Figs. 10 and 11 we show the results
for the remaining four parameters needed to approximate the
solution by tanh-functions as calculated by our nonperturba-
tive test function method. To compare with solutions ob-
tained by numerical simulations of the full system �6� and �7�
we measured the distance from x=0, whereby the solution of
T and c have fallen to three quarters and to one quarter of its
maximal value at x=0. This yields two equations each for T
and c, which allows us to determine the parameters w ,� and
v ,�. Again the results are better for tanh-functions than the
corresponding results for the Gaussian test functions de-
picted in Fig. 9.

D. The solution at the saddle node

The solution of the flame filament system at the saddle
node bifurcation depends on the value of the Lewis number.
From a numerical analysis of the system �4� and �5�, the
value of Dac is seen to increase with Le. In Fig. 12, we show
a comparison of the critical values of Da calculated by the
nonperturbative method with the aforementioned numeri-
cally obtained values of Dac, over a range of Lewis numbers.
We see that the critical Damköhler number does not vary
much for large Lewis numbers. For small Lewis numbers we
see that both the tanh-test functions �10� and the Gaussian
test functions �9� approximate the critical Damköhler number
very well. For larger values of Le, the tanh-test function
ansatz is better suited to calculate Da, as we have already
seen in Sec. IV C, due to the rapid change of shape when
varying Da.

We note that the values of Dac calculated via the nonper-
turbative method approach a finite value for large Le. This is
qualitatively similar to the behaviour of the numerically ob-
tained values of Dac for large Le.

It has been shown in �18� that the critical Damköhler
number depends very strongly on the parameter 	 which is

FIG. 6. �a� Comparison of the numerical results for the ampli-
tude of the temperature, f0, obtained using the nonperturbative
method with Gauss test functions �denoted by a solid line and a
dashed line for the stable and unstable branches, respectively�, with
the results for the full system of ordinary differential equations �6�
and �7� obtained via shooting for Le=1 �denoted by stars�. �b� Com-
parison of the numerical results for the inverse pulse width of the
temperature, w, obtained using the nonperturbative method with
Gauss test functions �denoted by a solid line and a dashed line for
the stable and unstable branches, respectively�, with the results ob-
tained via shooting for Le=1 �denoted by stars�.

FIG. 7. The steady solutions of the flame filament system �6�
and �7� for Le=10. Both the stable solutions �denoted by solid
lines� and the unstable solutions �denoted by dotted lines� are
shown for logarithmically spaced values of Da between Da=8.462
�Dac� and Da=30. �a� Profiles of T. �b� Profiles of c.
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related to the inverse of the activation energy. In Fig. 13 we
present a comparison of the functional dependency of Dac on
	, which we obtain from the nonperturbative method using
bell-shaped test functions �9�, with the one obtained by nu-
merically simulating the full system �6� and �7� at Le=0.1.
From Sec. IV A, we recall that such test functions were
found to be a good approximation to the solution for
Le=0.1 and 	=1. As 	 increases we see very good agreement
between the two sets of values.

V. THE SOLUTION FAR FROM THE BIFURCATION
POINT

We recall that for Da�Dac the profiles of the stable so-
lutions of T and c are plateau-like solutions with a narrow
reaction zone. The profiles of the unstable solutions are
pulse-like and, as we have shown in Sec. IV, they can be well
described even for large Da using bell-shaped test functions

�11�. In this section, we are concerned with the stable branch.
It can be seen from Figs. 1, 5, and 7 that for large Da the

reactant is fully consumed in the central region of the fila-
ment, and the extent of the product zone in which the reac-
tant is consumed increases with Da. This phenomenon is
independent of the Lewis number. We also note that for large
Lewis numbers and large Damköhler numbers the interior
widths of the temperature and of the reactant zones product
zone are equal and we have �=�. The amplitudes f0 and g0
both tend to 1 for large Da. This significantly simplifies the
analysis of the solution. In the following we employ a phe-
nomenological argument to determine the extent of the reac-
tion zone �.

We now present an empirical formula for the wave speed
V0 of unstirred combustion fronts. For simplicity, we denote
by Da the reaction kinetics for the unstirred case as well. We
measured the wave speed of the unstirred version of the sys-
tem �4� using a shooting algorithm. We find that V0 as a
function of Da clearly exhibits square-root behaviour. In par-
ticular, we find that for large Lewis numbers V0�
Da Le is

FIG. 8. Comparison of the numerical results for the amplitude,
obtained using the nonperturbative method with the basis functions
for bell-shaped functions �9� �denoted by a solid line and a dashed
line for the stable and unstable branches, respectively� and the basis
functions �10� �denoted by a dot-dashed line and a dotted line for
the stable and unstable branches, respectively�, with the results for
the full system of ordinary differential equations �6� and �7� ob-
tained via shooting for Le=10 �denoted by stars�. �a� The amplitude
for the temperature, f0, vs Da. �b� The amplitude for the concentra-
tion, 1−g0, vs Da.

FIG. 9. Comparison of the numerical results for the inverse
pulse widths, obtained using the nonperturbative method with the
basis functions for bell-shaped functions �9� �denoted by a solid line
and a dashed line for the stable and unstable branches, respec-
tively�, with the results for the full system of ordinary differential
equations �6� and �7� obtained via shooting for Le=10 �denoted by
stars�. �a� The inverse pulse width for the temperature, w, vs Da. �b�
The inverse pulse width for the concentration, v, vs Da.
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a good approximation. The scaling behaviour is reminiscent
of an underlying autocatalytic structure for large Da; numeri-
cal simulations show that one can crudely approximate
c1−T and K�T��T, where � is a �Lewis number depen-
dent� constant. We determined V0�Le� numerically for sev-
eral values of Da �Da=100, 500, 1000, 5000, 10000�. For
large Le the quotient V0 /
Da Le reaches a constant value of
0.669 with only very small deviation for the smaller values
of the Damköhler number indicating that there is no
Da-correction to the square-root behaviour of the velocity.
However, we can find a Lewis-number correction by em-
ploying linear regression. We find as an empirical formula
for V0,

V0 = 0.669
Da Le�1 −
0.158

Le
� . �17�

We have verified this equation by fitting to the velocity V0 as
a function of Da for several values of a fixed Lewis number
�Le=1, 10, 25, 50, 1000, 5000, 10000�. This formula is

similar in construction to the formula for a different solution
branch recently derived analytically in �31�.

If we try to calculate the free parameters of the plateau-
like test functions �10� from the algebraic equations �15� and
�16� for the free parameters of the plateau-like test functions
�10�, we encounter difficulties. It turns out that the system of
algebraic equations is degenerate. These problems seem to
occur with systems where the plateau-solution connects a
stable solution with an unstable one. In the Appendix we
show analytical results for the tanh-test function method for
a simple autocatalytic system which illustrates this degen-
eracy. However, for our system we may employ a simple
phenomenological argument �21,28� to calculate � and � for
large Lewis numbers and large Damköhler numbers. Station-
ary fronts in lamellar systems arise from a balance between
the diffusive front propagation prompted by the kinetic reac-
tion term and the contracting x-dependent velocity due to the
chaotic stirring. A balance of the front velocity V0 and the
velocity of chaotic stirring x is reached when V0=x, which

FIG. 10. Comparison of the numerical results for the inverse
pulse widths, obtained using the nonperturbative method with the
basis functions for tanh-functions �10� �denoted by a solid line and
a dashed line for the stable and unstable branches, respectively�,
with the results for the full system of ordinary differential equations
�6� and �7� obtained via shooting for Le=10 �denoted by stars�. �a�
The inverse pulse width for the temperature, w, vs Da. �b� The
inverse pulse width for the concentration, v, vs Da.

FIG. 11. Comparison of the numerical results for the extent of
the reaction zone, obtained using the nonperturbative method with
the basis functions for tanh-functions �10� �denoted by a solid line
and a dashed line for the stable and unstable branches, respec-
tively�, with the results for the full system of ordinary differential
equations �6� and �7� obtained via shooting for Le=10 �denoted by
stars�. �a� The extent of the reaction zone of the temperature, �, vs
Da. �b� The extent of the reaction zone of the concentration, �, vs
Da.
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implies that we get a stationary front when V0=�. Hence we
approximate

� = 0.669
Da Le�1 −
0.158

Le
� . �18�

In Fig. 14 we show that the phenomenological argument is
indeed a good approximation for � and �.

VI. SUMMARY

We studied the effect of stirring on a combustion system.
We used a reduced one-dimensional filament model intro-
duced in �18,19� to describe the dynamics of the cross-
filament structure. The effect of stirring is to remove heat
from the filaments by quenching it. Subsequently the front
does not contain enough heat to ignite the preheat zone. For
small values of the Damöhler number, i.e., for large stirring

rates, the reaction cannot be sustained. Only above a critical
Damköhler number can nontrivial states form through the
filaments. We used a nonperturbative method developed in
�27� to determine the critical Damköhler number and also the
actual solutions close to the Damköhler number. The critical
Damköhler number Dac is not very sensitive to variations in
the Lewis number provided it is large enough. This phenom-
enon is captured by our method. We found that the behaviour
close to criticality can be well described using bell-shaped
functions such as Gaussians �9� for small Lewis numbers,
and for large Lewis numbers in the “solid” regime by tanh-
test functions. The unstable solution branch can be well de-
scribed using bell-shaped functions for all Lewis numbers. In
Fig. 15 we show the actual solutions of the full problem �4�
and �5� for Le=1 where we have T=c. We note that the case
Le=1 is special in the sense that it allows us to use the test
function method which otherwise fails far away from the
bifurcation for tanh-functions due to a degeneracy �see Ap-
pendix�. For Le=1, we can actually use the test function
approach to calculate the inverse pulse width w=v provided
we also employ the phenomenological formula for the extent
of the reaction zone �=� �18�, and also fix f0=1.

We then described the solutions for large Damköhler
numbers. For small Lewis numbers the temperature ap-
proaches the burnt temperature T=1 from above, and higher
temperatures can be reached in the product zone. For larger
Lewis numbers the burnt temperature is approached for
higher Damköhler numbers from above. We note that the
largest change of the temperature with respect to the
Damköhler number occurs close to the critical Damköhler
number. For all Le, the concentration of the reactant c
reaches 0 within the product zone already slightly above the
critical Damköhler number, corresponding to a full consump-
tion of the fuel within the product zone. The extent of the
product zone as a function of the Damköhler number was
also described and a clear square-root behaviour was ob-
served. A simple phenomenological argument allowed us to
explain this dependence. We have determined an empirical
formula for the wave speed of the unstirred combustion sys-
tem for high Damköhler and high Lewis numbers. This em-
pirical formula allowed us to determine the actual form of
combustion fronts far away from the bifurcation with good
accuracy for large Lewis numbers.

We notice that V0 decreases �for a fixed Damköhler num-
ber� on decreasing the Lewis number. This can be seen from
Fig. 14, where �=V0 is shown. Now, in dimensional form,
Le=� / ��CpD�, where �, �, Cp and D are, respectively, the
density, thermal conductivity, specific heat capacity, and mo-
lecular diffusivity of the fuel �30,32�. Decreasing the Lewis
number is equivalent to increasing the relative importance of
D, �, and Cp in relation to �. Reducing � obviously de-
creases the ability of heat to propagate and, hence, the com-
bustion speed. Higher densities result in increased fuel mass
in each location, which means more heat is needed in a given
area to ignite all of the fuel before the wave moves on. Fuels
with increased Cp require more heat to increase the tempera-
ture by the a specified amount. Finally, increasing D in-
creases the transport of burnt fuel into the unburnt region and
vice versa, interfering with front propagation.

FIG. 12. Comparison of the numerically obtained values of the
critical Damköhler number �denoted by stars� obtained from inte-
grating the full system �4� and �5�, with the values of Dac obtained
using the nonperturbative method with bell-shaped test functions
�9� �denoted by a solid line� over a range of Le and with a tanh test
function �10� �denoted by a dashed line�.

FIG. 13. Comparison of the values of the critical Damköhler
number, Dac, at Le=0.1 obtained from integrating the full system
�6� and �7� numerically �denoted by stars� with those obtained by
the nonperturbative method using bell-shaped test functions �9� �de-
noted by a solid line�, over a range of the parameter 	.
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APPENDIX: AUTOCATALYTIC SYSTEM FOR LARGE
DAMKÖHLER NUMBERS

Here we perform explicitly the calculations for the test
function ansatz using tanh-test functions to describe the so-

lution for large Damköhler numbers for the simple lamellar
model of the autocatalytic Kolomogorov-Petrovsky-
Piscounoff equation �33�

�u

�t
= D

�2u

�x2 + x
�u

�x
+ Da u�1 − u� . �A1�

Again the solution is plateau-like for large Damköhler num-
bers, which motivates a tanh-function as a test function. We
write u�x , t� in the form

FIG. 14. Comparison of the results for the extent of the product zone, obtained using the phenomenological formula �18� �denoted by a
solid line�, with the numerical results obtained from the solution of the system �4� and �5� �denoted by stars�, for the width of T �given by
��, in the cases �a� Le=1, �c� Le=10, and �e� Le=100, and the width of c �given by ��, in the cases �b� Le=1, �d� Le=10, and �f�
Le=100.
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u�x,t� =
1

2
f���� with � = wx , �A2�

where

���� = tanh�� + w�� − tanh�� − w�� .

We note that

uxx =
1

2
fw2����� and xux =

1

2
f������ .

We study steady-solutions of �19� using the test function �20�
and consider the projections

�Duxx + xux + Da�u − u2�	uf� = 0,

�Duxx + xux + Da�u − u2�	uw� = 0,

�Duxx + xux + Da�u − u2�	u�� = 0.

Introducing a=w� and ����=sech2��+a�+sech2��−a� we
can rewrite the projections as

− Dw2���2� −
1

2
��2� + Da���2� −

f

2
��3�� = 0,

−
w2D

2
�1 + a

�

�a
����2� + ���2��2� + �w�������

+ Da�a
�

�a
− 1��1

2
��2� − � f

6
���3�� = 0,

− D
w2

2

�

�a
���2� + ������ + Da

�

�a
�1

2
��2� − � f

6
���3�� = 0.

For large Damköhler numbers we note the scaling ��
Da,
w�
Da and subsequently a�Da. In the limit Da→�, the
inner products simplify significantly �see �29� for the explicit
analytical expressions of the occurring inner products and
their large Da-limits�. At the leading orders in Da we obtain

1 − f = 0, �A3�

−
w2D

3
+

Da

2
�1 − f� = 0, �A4�

−
2

3
a + Da�1 −

2

3
f� = 0. �A5�

This has the solution f =1, w=0 and a=Da/2. For Da→�
we, therefore, obtain

� =
a

w
→ � . �A6�

Hence the solution tends to the stable state u=1, and not the
observed plateau-like solution.

If we ignore the second projection �A4� we can obtain the
correct solution by employing the phenomenological argu-
ment that, �=V0 where V0=2
Da �34�. The third equation
�A5� then yields w=
Da/4 which is a good approximation
for the large Da-limit �28�.
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